Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity.
نویسندگان
چکیده
Despite enhancing cardiopulmonary and muscular fitness, the effect of hypoxic exercise training (HE) on hemorheological regulation remains unclear. This study investigates how HE modulates erythrocyte rheological properties and further explores the underlying mechanisms in the hemorheological alterations. Twenty-four sedentary males were randomly divided into hypoxic (HE; n = 12) and normoxic (NE; n = 12) exercise training groups. The subjects were trained on 60% of maximum work rate under 15% (HE) or 21% (NE) O(2) condition for 30 min daily, 5 days weekly for 5 wk. The results demonstrated that HE 1) downregulated CD47 and CD147 expressions on erythrocytes, 2) decreased actin and spectrin contents in erythrocytes, 3) reduced erythrocyte deformability under shear flow, and 4) diminished erythrocyte volume changed by hypotonic stress. Treatment of erythrocytes with H(2)O(2) that mimicked in vivo prooxidative status resulted in the cell shrinkage, rigidity, and phosphatidylserine exposure, whereas HE enhanced the eryptotic responses to H(2)O(2). However, HE decreased the degrees of clotrimazole to blunt ionomycin-induced shrinkage, rigidity, and cytoskeleton breakdown of erythrocytes, referred to as Gardos effects. Reduced erythrocyte deformability by H(2)O(2) was inversely related to the erythrocyte Gardos effect on the rheological function. Conversely, NE intervention did not significantly change resting and exercise erythrocyte rheological properties. Therefore, we conclude that HE rather than NE reduces erythrocyte deformability and volume regulation, accompanied by an increase in the eryptotic response to oxidative stress. Simultaneously, this intervention depresses Gardos channel-modulated erythrocyte rheological functions. Results of this study provide further insight into erythrocyte senescence induced by HE.
منابع مشابه
Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease.
Pathologic water loss from sickle erythrocytes concentrates the abnormal hemoglobin and promotes sickling. The Ca2+-activated K+ channel (Gardos channel) contributes to this deleterious dehydration in vitro, and blockade of K+ and water loss via this channel could be a potential therapy in vivo. We treated five subjects who have sickle cell anemia with oral clotrimazole, a specific Gardos chann...
متن کاملModulation of Gardos channel activity by cytokines in sickle erythrocytes.
It has recently been shown that the Gardos channel activity of mouse erythrocytes can be modified by endothelins, suggesting a functional linkage between endothelin receptors and the Gardos channel. Using (86)Rubidium ((86)Rb) influx, effects were estimated of proinflammatory molecules such as platelet activator factor (PAF), endothelin-1 (ET-1), interleukin-10 (IL-10), and regulated on activat...
متن کاملRED CELLS Modulation of Gardos channel activity by cytokines in sickle erythrocytes
It has recently been shown that the Gardos channel activity of mouse erythrocytes can be modified by endothelins, suggesting a functional linkage between endothelin receptors and the Gardos channel. Using 86Rubidium (86Rb) influx, effects were estimated of proinflammatory molecules such as platelet activator factor (PAF), endothelin-1 (ET-1), interleukin-10 (IL-10), and regulated on activation ...
متن کاملThe Clinically Tested Gardos Channel Inhibitor Senicapoc Exhibits Antimalarial Activity.
Senicapoc, a Gardos channel inhibitor, prevented erythrocyte dehydration in clinical trials of patients with sickle cell disease. We tested the hypothesis that senicapoc-induced blockade of the Gardos channel inhibits Plasmodium growth. Senicapoc inhibited in vitro growth of human and primate plasmodia during the clinical blood stage. Senicapoc treatment suppressed P. yoelii parasitemia in vivo...
متن کاملAge Decline in the Activity of the Ca2+-sensitive K+ Channel of Human Red Blood Cells
The Ca(2+)-sensitive K(+) channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca(2+) loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 111 2 شماره
صفحات -
تاریخ انتشار 2011